

Year 13

Maths A Level Year 2

External Examinations - A Level

This is a breakdown of the content that is examined at the end of the two year course

Paper 1: Pure Mathematics 1 (*Paper code: 9MAO/01)

Paper 2: Pure Mathematics 2 (*Paper code: 9MA0/02)

Each paper is:

2-hour written examination

33.33% of the qualification

100 marks

Content overview

- Topic 1 Proof
- Topic 2 Algebra and functions
- Topic 3 Coordinate geometry in the (x, y) plane
- Topic 4 Sequences and series
- Topic 5 Trigonometry
- Topic 6 Exponentials and logarithms
- Topic 7 Differentiation
- Topic 8 Integration
- Topic 9 Numerical methods
- Topic 10 Vectors

Assessment overview

- Paper 1 and Paper 2 may contain questions on any topics from the Pure Mathematics content.
- · Students must answer all questions.
- Calculators can be used in the assessment.

Paper 3: Statistics and Mechanics (*Paper code: 9MA0/03)

2-hour written examination

33.33% of the qualification

100 marks

Content overview

Section A: Statistics

- Topic 1 Statistical sampling
- . Topic 2 Data presentation and interpretation
- Topic 3 Probability
- Topic 4 Statistical distributions
- · Topic 5 Statistical hypothesis testing

Section B: Mechanics

- Topic 6 Quantities and units in mechanics
- Topic 7 Kinematics
- . Topic 8 Forces and Newton's laws
- Topic 9 Moments

Assessment overview

- Paper 3 will contain questions on topics from the Statistics content in Section A and Mechanics content in Section B.
- · Students must answer all questions.
- Calculators can be used in the assessment.

This content is only suitable if your child is not continuing with the full A Level

External Examinations - AS Level

Paper 1: Pure Mathematics (*Paper code: 8MA0/01)

Written examination: 2 hours

62.5% of the qualification

100 marks

Content overview

- Topic 1 Proof
- Topic 2 Algebra and functions
- Topic 3 Coordinate geometry in the (x, y) plane
- Topic 4 Sequences and series
- Topic 5 Trigonometry
- Topic 6 Exponentials and logarithms
- Topic 7 Differentiation
- Topic 8 Integration
- Topic 9 Vectors

Assessment overview

- Students must answer all questions.
- Calculators can be used in the assessment.

Paper 2: Statistics and Mechanics (*Paper code: 8MA0/02)

Written examination: 1 hour 15 minutes

37.5% of the qualification

60 marks

Content overview

Section A: Statistics

- Topic 1 Statistical sampling
- Topic 2 Data presentation and interpretation
- Topic 3 Probability
- Topic 4 Statistical distributions
- · Topic 5 Statistical hypothesis testing

Section B: Mechanics

- Topic 6 Quantities and units in mechanics
- Topic 7 Kinematics
- Topic 8 Forces and Newton's laws

Assessment overview

- The assessment comprises two sections: Section A Statistics and Section B – Mechanics.
- · Students must answer all questions.
- Calculators can be used in the assessment.

Personal Learning Checklist - Pure

Unit	Topic	Class Notes	R	Α	G
Algebraic Methods	Proof by contradiction				
	Partial fractions				
	Algebraic division				
Functions and Graphs	Mappings				
	Modulus functions				
Огариз	Composite & inverse functions				
	Solving modulus problems				
	Combined transformations				
	Arithmetic Sequences				
Sequences and Series	Geometric Sequences				
	Sigma notation				
	Recurrence relations				
Binomial Expansion	Negative & fractional powers				
	Partial fractions				
Radians	Areas & Arc Length				
	Solving Trig equations				
	Small angle approximation				
Trigonometric Functions	Reciprocal trig				
	Identities using Reciprocal Trig				
	Inverse Trig				

Trig and Modelling	Addition & double angle formulae		
	Simplifying sin +/- cos functions		
	Proving identities		
Parametric Equations	Converting between parametric & cartesian		
	Sketching parametrics		
	Points of intersection		
	Modelling Parametrics		
	Sine & Cosine		
	Exponentials and logs		
	Chain rule		
Differentiation	Product rule		
	Quotient rule		
	Harder Trig Functions		
	Parametrics		
	Implicit		
	Using 2nd derivatives		
	Rates of change		
Numerical Methods	Locating Roots		
	Iteration		
	Newton-Raphson		
	Standard functions		
	By Substitution		
	By Parts		

PLCs are provided for all students to ensure they...

Understand the order of teaching

Can choose to look ahead and research

Can keep their subject files organised

Students are provided with separate PLCs for Pure and separate PLCs for Pure and Applied due having different teachers delivering the two elements of the course

Unit	Topic	Class Notes	R	Α	G	
Statistics						
Regression, Correlation and	Using exponentials with linear regression					
Hypothesis Testing	Finding the PMCC					
	Hypothesis testing with PMCC					
Conditional Probability	Set notation					
	Conditional probability					
	Probability formulae					
	Tree diagrams					
Normal Distribution	Finding probabilities from the normal distribution					
	Inverse normal					
	The standardised distribution					
	Finding the mean and standard deviation					
	Approximating the Binomial distribution					
	Hypothesis testing the Normal distribution					

Unit	Topic	Class Notes	R	Α	G	
Mechanics						
Moments	Calculating moments and resultant moments					
	Equilibrium					
	Tilting					
Forces and Friction	Resolving forces					
	Inclined planes					
	Friction					
Projectiles	SUVAT with resolution of forces					
	Derivation of general formulae					
Application of Forces	Static particles					
	Statics with friction					
	Static rigid bodies (using moments)					
	Dynamics on an inclined plane					
	Connected particles on an inclined plane					
Further Kinematics	Vectors in Kinematics					
	Projectiles with vectors					
	Variable acceleration in 1D					
	Variable acceleration in 2D					

Algebraic methods Proof by contradict Algebraic fractions

Proof by contradiction

Algebraic fractions

Partial fractions

Repeated factors

Algebraic division

The modulus function Functions and mappings Composite functions Inverse functions

y = |f(x)| and y = f(|x|)

Combining transformations

Functions and graphs

Solving modulus problems

Module 1 - Pure

These are the Pure Maths topics which are Studied in Module 1 of Year 13.

Previous knowledge as they work through

Expanding $(1 + x)^n$ Expanding $(a + bx)^n$ Using partial fractions

Binomial expansion

Addition formulae

Using the angle addition formulae

Double-angle formulae

Solving trigonometric equations

Simplifying $a \cos x \pm b \sin x$

Proving trigonometric identities

Modelling with trigonometric

functions

Trigonometry and modelling

Radians

Radian measure
Arc length
Areas of sectors and segments
Solving trigonometric equations
Small angle approximations

Trigonometric functions

Secant, cosecant and cotangent
Graphs of sec x, cosec x and cot x
Using sec x, cosec x and cot x
Trigonometric identities
Inverse trigonometric functions

Differentiating sin *x* and cos *x*Differentiating exponentials and logarithms

The chain rule

The product rule

The quotient rule

Differentiating trigonometric functions

Parametric differentiation Implicit differentiation

Using second derivatives

Rates of change

Module 2 - Pure

Numerical methods

Locating roots
Iteration
The Newton-Raphson method
Applications to modelling

Parametric equations

Parametric equations
Using trigonometric identities
Curve sketching
Points of intersection
Modelling with parametric
equations

Integrating standard functions

Integrating f(ax + b)

Using trigonometric identities

Reverse chain rule

Integration by substitution

Integration by parts

Partial fractions

Finding areas

The trapezium rule

Solving differential equations

Modelling with differential

equations

Integration as the limit of a sum

Integration

Arithmetic sequences Arithmetic series Geometric sequences Geometric series Sum to infinity Sigma notation Recurrence relations Modelling with series

Sequences and series

These are the Pure Maths topics which are / studied in Module 3 of Year 13. The course is completed in this Module and the focus becomes revision for the external exams

Module 3 - Pure

Revision

Vectors

3D coordinates Vectors in 3D Solving geometric problems Application to mechanics

Regression, correlation and hypothesis testing

Exponential models

Measuring correlation

Hypothesis testing for zero correlation

These are the Applied Maths topics which The focus for this Module 1 of Year 13.

Statistics.

Finding probabilities for normal distributions

The inverse normal distribution function

The standard normal distribution

Finding μ and σ

Approximating a binomial distribution

Hypothesis testing with the normal distribution

Module 1 - Applied

Set notation

Conditional probability

Conditional probabilities in

Venn diagrams

Probability formulae

Tree diagrams

Conditional probability

Applications of forces

Static particles

Modelling with statics

Friction and static particles

Static rigid bodies

Dynamics and inclined planes

Connected particles

These are the Applied Maths topics which The focus for this Module 2 of Year 13.

Module is Mechanics.

Moments

Resultant moments

Equilibrium

Centres of mass

Tilting

Moments

Module 2 - Applied

Projectiles

Resolving forces

Inclined planes

Friction

Horizontal projection

Horizontal and vertical components

Projection at any angle

Projectile motion formulae

Vectors in kinematics

Vector methods with projectiles

Variable acceleration in one dimension

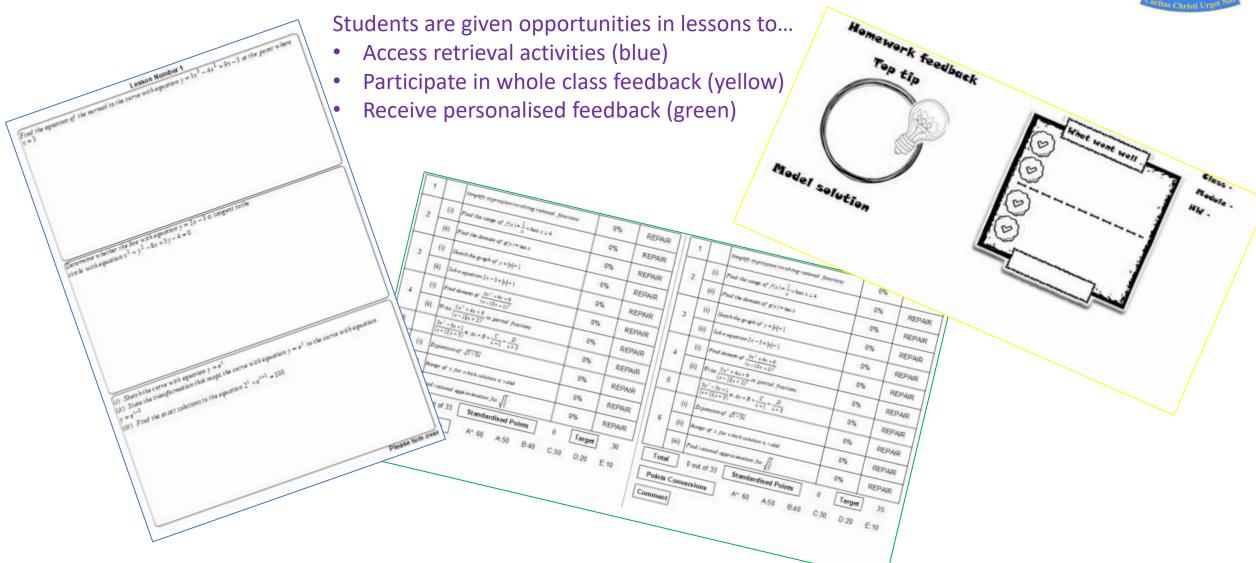
Differentiating vectors

Integrating vectors

Further kinematics

Forces and friction

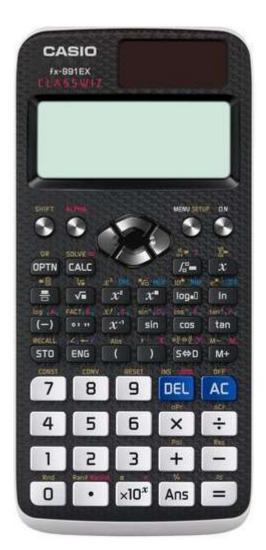
Revision


Module 3 - Applied

The Applied content of the course has been completed by Module 3.

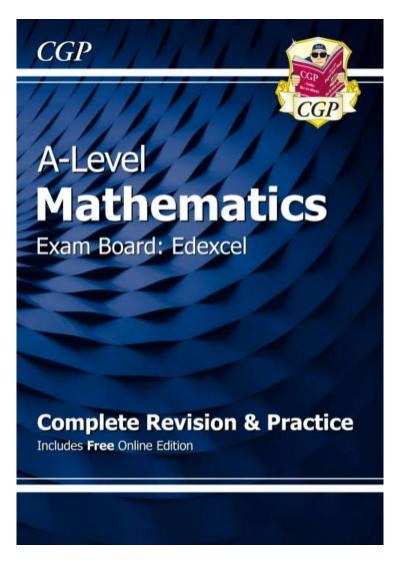
The focus becomes revision for the external exams.

Retrieval and Feedback



Recommended Calculator

Casio fx-991EX Scientific Calculator


The calculator which we recommend for the course is available to purchase from the school via ParentPay

Suggested Revision Material

CGP A Level Mathematics Edexcel Complete Revision and Practice

> The revision guide which we recommend for the course is available to purchase from the school via ParentPay

